An algorithm for weighted fractional matroid matching

نویسندگان

  • Dion Gijswijt
  • Gyula Pap
چکیده

LetM be a matroid on ground set E. A subset l ⊆ E is called a line when r(l) ∈ {1, 2}. Given a set of lines L = {l1, . . . , lk} in M , a vector x ∈ RL+ is called a fractional matching when ∑ l∈L xla(F )l ≤ r(F ) for every flat F ofM . Here a(F )l is equal to 0 when l∩F = ∅, equal to 2 when l ⊆ F and equal to 1 otherwise. We refer to ∑ l∈L xl as the size of x. It was shown by Chang et al. that a maximum size fractional matching can be found in polynomial time. In this paper we give an efficient algorithm to find for given weight function w : L → Q a maximum weight fractional matching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimizing Submodular Functions on Diamonds via Generalized Fractional Matroid Matchings

In this paper we show the rst polynomial-time algorithm for the problem of minimizing submodular functions on the product of diamonds of nite size. This submodular function minimization problem is reduced to the membership problem for an associated polyhedron, which is equivalent to the optimization problem over the polyhedron, based on the ellipsoid method. The latter optimization problem is a...

متن کامل

Optimal Matching Forests and Valuated Delta-Matroids

The matching forest problem in mixed graphs is a common generalization of the matching problem in undirected graphs and the branching problem in directed graphs. Giles presented an O(nm)-time algorithm for finding a maximum-weight matching forest, where n is the number of vertices and m is that of edges, and a linear system describing the matching forest polytope. Later, Schrijver proved total ...

متن کامل

Shortest Disjoint S-Paths Via Weighted Linear Matroid Parity

Mader’s disjoint S-paths problem unifies two generalizations of bipartite matching: (a) nonbipartite matching and (b) disjoint s–t paths. Lovász (1980, 1981) first proposed an efficient algorithm for this problem via a reduction to matroid matching, which also unifies two generalizations of bipartite matching: (a) non-bipartite matching and (c) matroid intersection. While the weighted versions ...

متن کامل

Approximation Algorithms for Online Weighted Rank Function Maximization under Matroid Constraints

Consider the following online version of the submodular maximization problem under a matroid constraint: We are given a set of elements over which a matroid is defined. The goal is to incrementally choose a subset that remains independent in the matroid over time. At each time, a new weighted rank function of a different matroid (one per time) over the same elements is presented; the algorithm ...

متن کامل

The Optimal Path - Matching

We describe a common generalization of the weighted matching problem and the weighted matroid intersection problem. In this context we establish common generalizations of the main results on those two problems--polynomial-time solvability, rain-max theorems, and totally dual integral polyhedral descriptions. New applications of these results include a strongly polynomial separation algorithm fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 103  شماره 

صفحات  -

تاریخ انتشار 2013